UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education NS Rapacambridge com | * | | |----|--| | N | | | N | | | Ø | | | 00 | | | N | | | 00 | | | 00 | | | ω | | | Ν | | | 00 | | | ¥ | | | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | GEOGRAPHY 0460/43 Paper 4 Alternative to Coursework May/June 2013 1 hour 30 minutes Candidates answer on the Question Paper. Additional Materials: Calculator Ruler #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name in the spaces provided. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. The Insert contains Fig. 1 and Table 5 for Question 1, and Photographs A and B and Table 9 for Question 2. The Insert is **not** required by the Examiner. Sketch maps and diagrams should be drawn whenever they serve to illustrate an answer. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | |--------------------|--|--| | Q1 | | | | Q2 | | | | Total | | | This document consists of 13 printed pages, 3 blank pages and 1 Insert. ear their scale Cannoniae Conn 1 A class of students were studying traffic flow at a busy road junction near their so, sketch map of the road junction is shown in Fig. 1 (Insert). The students wanted to investigate the following hypotheses: **Hypothesis 1:** *Traffic flow changes during the day.* 08.00 to 09.00 **Hypothesis 2:** Traffic congestion occurs at all sites going towards and away from the road junction. The students chose eight sites to do traffic surveys. These are shown on Fig. 1. They agreed to do four separate counts lasting one hour at the following times: | 14.0 | 00 to | 12.00
15.00
18.00 | |------|-------|--| | (a) | (i) | Describe how the students would organise the traffic survey. Refer to their planning and recording. | [4] | | | (ii) | Suggest three difficulties which the students might have had when doing their traffic survey. | | | | 1 | | | | | | | | 2 | | | | | | | | 3[3] | | | | [0] | Table 1 Traffic survey results for site 3 | (b) The results of | the students' tr | | 3
at site 3 are s | shown in Table | 1, below. | Da Cambridge Co. | |---------------------------|------------------------|------------|-----------------------------|--------------------|----------------|------------------| | | | Table | 1 | | · | Mide | | | Traffic | survey res | sults for site | 3 | | ac.Co | | Time of survey | bikes /
motor bikes | cars | vans /
minibuses | lorries /
buses | Total vehicles | | | 08.00 to 09.00 | 8 | 101 | 38 | 13 | 160 | | | 11.00 to 12.00 | 6 | 107 | 27 | 18 | | | | 14.00 to 15.00 | 4 | 73 | 29 | 20 | 126 | 1 | | 17.00 to 18.00 | 2 | 41 | 22 | 10 | 75 | | - (i) Complete Table 1 by calculating the total number of vehicles counted between 11.00 and 12.00. [1] - (ii) Use the data in Table 1 to complete the divided bar graph for the traffic survey results between 11.00 and 12.00 on Fig. 2 below. ## Results of student traffic survey ## Key - B bikes/motorbikes - C cars - vans/minibuses - lorries/buses Fig. 2 [Turn over © UCLES 2013 | | | | | The state of s | |-------|--|-------------------------------|--------------------------|--| | | | 4 | | 1. D | | (iii) | Which one of the following ty survey results between 11.00 | pes of graph wo
and 12.00? | uld also be suitable to | show the Traffic | | | Circle your answer below. | | | | | | pie chart | line graph | scatter graph | [1] | | (iv) | What conclusion would the flow changes during the day | | 3 make about Hypo | thesis 1: Traffic | | | Support your decision with e | vidence from Tab | ole 1 and Fig. 2. | [4] | | (v) | Suggest how traffic flows bet those at site 3 which are sh answer. | | | | | | Number of vehicles | | | | | | | | | | | | | | | | | | Type of vehicles | | | | | | | | | | | | | | | [2] | (c) To test **Hypothesis 2:** *Traffic congestion occurs at all sites going towards and from the road junction*, the students used their results to calculate an index of traffic for each site. The index is shown in Table 2 below. Table 2 Index of traffic flow | vehicle type | number of points allocated* | |-------------------|-----------------------------| | bike / motor bike | 0.5 | | car | 1.0 | | van / minibus | 2.0 | | lorry / bus | 3.0 | ^{*}more points were allocated to vehicles causing more congestion The results of using this index between 08.00 and 09.00 at site 3 are shown in Table 3 below. Table 3 Index of traffic flow for site 3 between 08.00 and 09.00 | vehicle type | bikes / motor bikes | cars | vans / minibuses | lorries / buses | |----------------|---------------------|------|------------------|-----------------| | number counted | 8 | 101 | 38 | 13 | | points | 0.5 | 1.0 | 2.0 | 3.0 | | Index score | 4 | 101 | 76 | 39 | Total index score between 08.00 and 09.00 at site 3 = 220 (i) Calculate the index scores for site 3 between 11.00 and 12.00 in Table 4 below. [2] Table 4 Index score of traffic flow for site 3 between 11.00 and 12.00 | vehicle type | bikes / motor bikes | cars | vans / minibuses | lorries / buses | |----------------|---------------------|------|------------------|-----------------| | number counted | 6 | 107 | 27 | 18 | | points | 0.5 | 1.0 | 2.0 | 3.0 | | Index score | | 107 | 54 | | Total index score between 11.00 and 12.00 at site 3 = 218 © UCLES 2013 [Turn over (ii) The results of the index of traffic flow for all 8 survey sites are shown in (Insert). www.PapaCambridge.com The students decided to show their results in a line graph, Fig. 3 below. Use the data in Table 5 to complete the line for site 1. ## Index of traffic flow at survey sites # Key traffic going towards junction - - · traffic going away from junction Fig. 3 [Total: 30 marks] www.PapaCambridge.com 2 Two groups of students were investigating the characteristics of a local river which flow 15 km from its source to the sea. They wanted to investigate possible reasons for change velocity (speed of flow) downstream. They carried out their fieldwork at five sites along the course of the river. They decided to test the following hypotheses: Hypothesis 1: Velocity increases as the river bed slopes more steeply. **Hypothesis 2:** *Velocity increases as the wetted perimeter of the river channel increases.* | 1 |
 |
 | | |-------|------|------|--| | | | | | | ••••• |
 |
 | | | 2 |
 |
 | | (a) Before they began the fieldwork their teacher spoke to them about safety in and around (b) First the students used a floating object to measure velocity over a distance of 10 metres. The results from Group A at site 1 are shown in Fig. 4 below. ## **River recording sheet** | Study sit | te: 1 | Group A | |-------------------------|---------------|-------------------------| | Measurir | ng velocity | | | Time for a fl
Test 1 | oating object | ct to travel 10 metres: | | | 71 second | • | | Test 3 | 59 second | • | | Test 4 | 61 second | | | Test 5 | 43 second | IS | Fig. 4 | (i) | Name three different pieces of equipment the group would use to carry out their fieldwork at this site. | |-----|--| | | 1 | | | 2 | | | 3[3 | www.papaCambridge.com (ii) Calculate the average velocity at site 1 using the results shown in Fig. 4. Show your working and your answer in the box below. Study site: 1 Group A Average (mean) length of time to float 10 metres = Average velocity = $\frac{\text{distance}}{\text{average time}}$ Average velocity = metres per second (iii) When they had completed their measurements at site 1 the two groups compared their results. These results are shown in Table 6 below. Table 6 Times for a floating object to travel 10 metres at site 1 | | Group A | Group B | |--------|------------|------------| | Test 1 | 48 seconds | 38 seconds | | Test 2 | 71 seconds | 27 seconds | | Test 3 | 59 seconds | 49 seconds | | Test 4 | 61 seconds | 29 seconds | | Test 5 | 43 seconds | 31 seconds | | Suggest two reasons why the results obtained by the two groups were different. | |---| | 1 | | | | | | 2 | | | [Turn over © UCLES 2013 | | e how the students n | neasured the d | Iownstream slope | €. | |---------|--|-----------------------|--|-----------------| 1 I | | | be a second of the t | | | | nstream slope and pling sites are show | | | group B obtaine | | ve sam | piling sites are snow | | iow. | | | | | Table 7 | | | | | Res | ults of group | В | | | | site | gradient
(degrees) | average velocity (m/s) | | | | nearest source
1 | 8 | 0.29 | | | | 2 | 6 | 0.43 | | | | 3 | 5 | 0.37 | | | | | 3 | 0.46 | | | | 4 | | | | | | 4
5
nearest mouth | 1 | 0.47 | | | /hat co | 5
nearest mouth | | | lypothesis 1: | | | 5 | students hav | e made about H | lypothesis 1: | | crease | 5 nearest mouth | students hav | e made about H | lypothesis 1: | | | 5 | 1 | 0.47 | | - www.PapaCambridge.com (c) To investigate Hypothesis 2: Velocity increases as the wetted perimeter of the channel increases, the students needed to measure the width of the river channel the depth of the river at each site. - (i) Complete Fig. 5 below to identify the two different pieces of equipment used to measure the width of the river. Fig. 5 (ii) The students measured the depth of the river every 0.5 m across the channel. Their results for site 1 are shown in Table 8, below. Table 8 **Results for site 1** | Distance across channel (m) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | |-----------------------------|------|------|------|------|------|------| | Depth of river (m) | 0.18 | 0.20 | 0.25 | 0.40 | 0.30 | 0.20 | Use these results to complete Fig. 6 below, the cross-section of the channel at site 1. [2] #### Cross-section of channel at site 1 Fig. 6 [Turn over © UCLES 2013 www.PapaCambridge.com (iii) Photograph B (Insert) shows how students measured the wetted perimed river. The wetted perimeter is the part of the channel cross-section which the touches. Their method is described in Fig. 7, below, which is part of a student's fieldwork notebook. #### **Extract from fieldwork notebook** Measuring the wetted perimeter The tape measure was placed along the bed of the river, starting and finishing at water level on both banks. To make the method more accurate a student walked along it to cross the river. Fig. 7 The students' results are shown in Table 9 (Insert). Use these results to complete Fig. 8 below by plotting the result for site 1. # Scatter graph of length of wetted perimeter and average velocity Fig. 8 | | 42 | | |------|--|--------| | | 13 A. D. | 1 | | (iv) | Do their results support Hypothesis 2: <i>Velocity increases as the wetted per of the river channel increases</i> ? Support your conclusion with evidence from Taxand Fig. 8. | 10 | | | | ` | | | | | | | | | | | | | | | |
01 | | (v) | Suggest two disadvantages of their method for measuring the wetted perimeter i | - | | (*) | a large river. | | | | 1 | | | | | | | | 2 | | |) To | extend their fieldwork the students investigated the impact of people on the rive | - | | Sta | te one impact people may have on a river. Describe how the impact could be estigated. | | | Imp | pact of people | | | | | | | | | | | Inve | estigation | | | | | •• | | | | | | | | | | | | | | | [4 | 4] | | | [Total: 30 marks | s] | # **BLANK PAGE** www.PapaCambridge.com # **BLANK PAGE** www.PapaCambridge.com 16 ### **BLANK PAGE** www.PapaCambridge.com Copyright Acknowledgements: Question 2 Photograph A © www.georesources.co.uk/darentfte2. Question 2 Photograph B © Amy Hatchwell; Royal Geographical Society; www.rgs.org/OurWork/Schools/Fieldwork+ and + local + learning/Fieldwork + techniques/Rivers. Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © UCLES 2013